sexta-feira, 27 de agosto de 2010

Alunos do Colégio Alfa Executive

Em breve este blog também será um ambiente de estudos reservado aos meus alunos do Colégio Alfa Executive do qual sou professora de Matemática da 8ª Série (9º ano) do Ensino fundamental e 2ª e 3ª Séries do Ensino Médio.

Serão postados exercícios, curiosidades e informações importantes referente às aulas.

Aos alunos um ótimo semestre!!

Professora Daiana Zanelato dos Anjos.

quarta-feira, 18 de agosto de 2010

A tão usada fórmula de Bhaskara...um pouquinho de história e curiosidade

Nós professores de Matemática ao ensinarmos a resolução para encontrar as raízes de uma equação do 2º grau, introduzimos aos alunos a fórmula de Bhaskara, mas usualmente, não nos preocupamos em mostrá-los quem foi Bhaskara e se foi este o "descobridor" da tão utilizada fórmula. Vejamos:

Bhaskara viveu de 1114 a 1185 aproximadamente, na Índia.




Nascido numa tradicional família de astrólogos indianos, seguiu a tradição profissional da família, porém com uma orientação científica, dedicando-se mais à parte matemática e astronômica ( tais como o cálculo do dia e hora da ocorrência de eclipses ou das posições e conjunções dos planetas ) que dá sustentação à Astrologia.
Seus méritos foram logo reconhecidos e muito cedo atingiu o posto de diretor do Observatório de Ujjain, o maior centro de pesquisas matemáticas e astronômicas da India, na época.


Seu livro mais famoso é o Lilavati, um livro bem elementar e dedicado a problemas simples de Aritmética, Geometria Plana (medidas e trigonometria elementar ) e Combinatória. A palavra Lilavati é um nome próprio de mulher (a tradução é Graciosa), e a razão de ter dado esse título a seu livro é porque, provavelmente, teria desejado fazer um trocadilho comparando a elegância de uma mulher da nobreza com a elegância dos métodos da Aritmética. Numa tradução turca desse livro, 400 anos depois, foi inventada a história de que o livro seria uma homenagem à filha que não pode se casar. Justamente essa invenção é que tornou-o famoso entre as pessoas de pouco conhecimento de Matemática e de História da Matemática. Parece, também, que os professores estão muito dispostos a aceitarem estórias românticas em uma área tão abstrata e difícil como a Matemática; isso parece humanizá-la mais.


Ele escreveu dois livros matematicamente importantes e devido a isso tornou-se o matemático mais famoso de sua época. Esses livros são:

Equações INDETERMINADAS ou diofantinas:
chamamos assim às equações (polinomiais e de coeficientes inteiros) com infinitas soluções inteiras, como é o caso de:

y - x = 1 que aceita todos os x = a e y = a + 1 como soluções , qualquer que seja o valor de a
a famosa equação de Pell x^2 = N y^2 + 1
Bhaskara foi o primeiro a ter sucesso na resolução dessa equação, para isso introduzindo o método do chakravala (ou pulverizador).

Mas, e a fórmula de Bhaskara ?

EXEMPLO:
para resolver as equações quadráticas da forma ax^2 + bx = c, os indianos usavam a seguinte regra:
"multiplique ambos os membros da equação pelo número que vale quatro vezes o coeficiente do quadrado e some a eles um número igual ao quadrado do coeficiente original da incógnita. A solução desejada é a raiz quadrada disso."
É também muito importante observar que a falta de uma notação algébrica, bem como o uso de métodos geométricos para deduzir as regras, faziam os matemáticos da Era das Regras terem de usar varias regras para resolver equações do segundo grau. Por exemplo, precisavam de regras diferentes para resolver x^2 = px + q e x^2 + px = q. Foi só na Era das Fórmulas que iniciaram as tentativas de dar um procedimento único para resolver todas as equações de um grau dado.

Bhaskara conhecia a regra acima, porém, a regra não foi descoberta por ele. A regra já era do conhecimento de, no mínimo, o matemático Sridara, que viveu há mais de 100 anos antes de Bhaskara.



Resumindo o envolvimento de Bhaskara com equações do segundo grau

Quanto a equações DETERMINADAS (equação com um número finito de soluções) do segundo grau:
No Lilavati, Bhaskara não trata de equações quadráticas determinadas e o que ele faz sobre isso no Bijaganita é mera cópia do que já tinham escrito outros matemáticos.
Quanto a equações INDETERMINADAS (equação com um número infinito de soluções) do segundo grau:
Aí ele realmente fez grandes contribuições e essas estão expostas no Bijaganita (livro sobre Álgebra). Pode-se dizer que essas contribuições, principalmente a invenção do método iterativo do chakravala e sua modificação do clássico método kuttaka correspondem ao ápice da matemática indiana clássica, podendo-se acrescentar que é somente com Euler e Lagrange que voltaremos a encontrar desenvoltura técnica e fertilidade de ideias de porte comparáveis.

Fonte da pesquisa: http://www.somatematica.com.br/

quinta-feira, 12 de agosto de 2010

Super Interessante - Charada

Vejam que interessante a reportagem publicada no Jornal "O Estado de São Paulo"

Um grupo de pesquisadores americanos concluiu que é possível resolver qualquer combinação do quebra-cabeças conhecido como "cubo mágico" em apenas 20 movimentos ou menos.
Acessem o link, lá a reportagem está completa: http://www.estadao.com.br/noticias/geral,matematicos-acham-numero-de-deus-para-resolver-o-cubo-magico,594006,0.htm

Agora é possível resolver a charada em até 20 movimentos ou até menos, a menor quantidade era de 22 movimentos conseguida em 2008.
Para quem não sabe, o cubo foi inventado por um arquiteto húngaro, chamado Erno Rubik, em 1974. Hoje em dia, existem competições internacionais para se resolver a charada do Cubo Mágico!

Super Interessante...naveguem pela notícia e pratiquem Matemática, pois como já dizia Einstein: "A mente que se abre a uma nova idéia jamais voltará ao seu tamanho original."

quinta-feira, 5 de agosto de 2010

Mais uma dica de leitura


Dessa vez o livro é de Keith Devlin e realmente mostra um lado da Matemática "natural" muito interessante. A chamada Matemática Natural é assim nomeada pelo autor para mostrar exemplos de como animais e até mesmo plantas fazem Matemática inconscientemente.
O livro relata uma série de experimentos onde animais, como os cães, resolvem problemas do cotidiano utilizando o instinto, mas que se resolvidos por humanos utilizariam uma Matemática nada trivial.
Aspectos interessantes e curiosidades misturados ao envolvente munda da ciência dos números.

Dicas de leitura informativa em Matemática - Desmestificando a ciência dos padrões

Quando pensamos em livros de Matemática nos vem a mente algo repleto de fórmulas teoremas e demonstrações.
Mas na minha busca por notícias sobre o assunto, encontrei livros que desmestificam esta ciência e apresentam curiosidades interessantes sobre o assunto.

Um deles é de James D. Stein, e trata de questões da Matemática no cotidiano. A linguagem é simples, mas requer conhecimento mais sofisticado da ciência. Indicado para aqueles que estudam esta ciência, mas não impede que curiosos especulem.
"Como a Matemática explica o mundo" é um texto que nos mostra a Matemática do cotidiano e pode interferir no que muitos acreditam ser a tal ciência.

Em breve, citarei mais obras interessantes!

Uma Proposta de Plano de Aula Envolvendo os Temas Transversais

REFLEXÕES NA PRÁTICA PEDAGÓGICA: UMA PROPOSTA DE PLANO DE AULA ENVOLVENDO OS TEMAS TRANSVERSAIS E A MATEMÁTICA

Qual a melhor forma de ensinar? Como, nós professores, alcançaremos o objetivo de transferir conhecimento de forma que os alunos também alcancem o objetivo que buscam na escola? Essas e muitas outras questões podem ser levantadas quanto paramos para pensar sobre a nossa prática pedagógica.
Quando se pensa em refletir sobre a prática pedagógica e a forma de ensinar, rapidamente pensamos em didática. E quais os caminhos que a didática nos aponta para o “melhor ensinar”?
Um dos caminhos que se mostra importante para reflexão é a ideia da superação da dicotomia entre a teoria e a prática. Essa não-dicotomização aponta que a prática e a teoria devem caminhar juntas na direção do ensino. Podemos nos perguntar: de que forma a teoria e a prática podem caminhar juntas? Uma das formas interessantes de essa não-dicotomização acontecer parte do professor, da ideia errônea de que apenas o conteúdo interessa para que uma boa aula aconteça.
Segundo Paulo Freire (1985), “... ensinar não é transferir conhecimento, mas criar as possibilidades para a sua própria produção ou a sua construção.” Se analisarmos esta ideia, podemos afirmar que para o aluno conseguir construir os seus próprios conhecimentos, ele deve ser um ser crítico e pensante, que não recebe um conteúdo pronto e acabado não sendo capaz de analisá-lo e criticá-lo. Ligando esta ideia a não-dicotomização, podemos perceber o quanto é essencial a prática estar interligada com a teoria. Nós professores, precisamos elaborar uma aula capaz de fazer o aluno perceber que a escola não é um local fora do restante do mundo, e que através dos ensinamentos recebidos alí, o aluno pode entender melhor os fenômenos que acontecem ao seu redor.
Outro ponto importante, focando o aluno pensante e crítico apontado acima, é o que foi colocado por Fiorentini (1995), que desta vez, envolve o ensinar Matemática, disciplina chave deste trabalho:
“...o professor que acredita que o aluno aprende através da memorização ou por regras transmitidas, ou ainda, pela exaustiva repetição de exercícios, também terá uma prática diferente daquele que concebe que o aluno aprende através de ações reflexivas envolvendo materiais e atividades, situações-problema e problematizações, na busca do construção de um conceito.”


No sentido desta colocação de Fiorentini, surgem algumas propostas que auxiliam o professor a tornar-se investigador, desviando o foco do aluno de atividades repetitivas e operações de rotina. Essas propostas são apontadas por Moretti e Flores (2008) e são elas: a resolução de problemas, a modelagem matemática, o uso dos computadores, os jogos matemáticos, dentre outras.
Neste momento da reflexão, onde focamos o ensinar Matemática, não podemos esquecer o quanto é importante citarmos os elementos fundamentais da didática, que segundo Melo e Urbanetz (2008), faz com que “traçamos um caminho de superação da didática instrumental.” Os elementos fundamentais da didática são: objetivo, conteúdo, metodologia e avaliação. Estes elementos fundamentais são pontos fortes para elaboração de todos os planos de aula que o professor pensa em fazer.
Desta forma, o plano de aula também surge como ponto de reflexão. Para esta reflexão acontecer de forma completa, este presente trabalho apresenta um plano de aula pensado dentro das teorias refletidas acima e, principalmente, trazendo para futura discussão: a aula de Matemática pensada e elaborada com temas transversais .
Com o intuito de trabalhar a Matemática e o tema Saúde, elaboramos um plano de aula para a 6ª série do ensino fundamental, que além de focar no conteúdo de multiplicação e divisão de números racionais, preocupa-se com a questão da obesidade infantil.

PLANO DE AULA

ESCOLA: Escola de Educação Básica Flor do Amanhecer
SÉRIE: 6º série do Ensino Fundamental
UNIDADE CURRICULAR: Matemática
HORÁRIO: Início: 08:00 Término: 08:45 Duração: 45’ DATA: 07/04/10

1. ASSUNTO• Operações com números racionais (Multiplicação e Divisão).

2. CONTEÚDOS

• Multiplicação com números racionais (relembrando);
• Divisão com números racionais;
• Divisão não-exata.

3. OBJETIVOS

• Relembrar a multiplicação com Números Racionais;
• Relembrar a divisão com Números Racionais;
• Apresentar o tema: Saúde e Obesidade Infantil;
• Calcular o Índice de Massa Corporéa (IMC) individual;
• Refletir sobre o tema e o resultado encontrado com o cálculo do IMC.

4. LINHAS DE AÇÃO


4.1. Desenvolvimento Metodológico:
Aula expositiva e dialogada.
Inicialmente, apresentaremos um texto informativo – criado pela professora da disciplina - sobre a obesidade infantil e o cálculo do Índice de Massa Corpórea (IMC). Depois desta leitura, será apresentado um exemplo do cálculo do IMC e em seguida, será solicitado que os alunos calculem o seu próprio IMC e verifiquem os resultados na tabela. Importante ressaltar que os cálculos de IMC, serão conferidos com o uso de calculadoras (trazidas de casa pelos alunos); esta ação auxiliará os alunos também no aprendizado com calculadoras.
4.2. Desenvolvimento do Conteúdo: Em anexo.
4.3. Recursos Utilizados: Quadro negro, giz, livro didático e calculadoras.
4.4. Avaliação: Serão avaliadas a participação e colaboração nos exemplos e nos cálculos individuais de IMC, assim como respostas das questões colocadas para debate.
4.5. Conteúdo da aula anterior: Revisão da teoria de Operações com Números Racionais (multiplicação e de divisão).
4.6. Conteúdo da aula posterior: Avaliação escrita deste conteúdo apresentado.

5- BIBLIOGRAFIA

ANDRINI, ÁLVARO. VASCONCELLOS, MARIA JOSÉ. Praticando Matemática. São Paulo: Editora do Brasil, 2002.

GUELLI, OSCAR. Matemática – Uma Aventura do Pensamento. São Paulo: Ática, 2005.

DANTE, LUIZ ROBERTO. Tudo é Matemática. São Paulo: Ática, 2005

Revista Nova Escola – Editora Abril. Edição Especial – Parâmetros Curriculares Nacionais- Maio de 2004. Páginas: 57 a 60.

DIABETE. Site de Educação sobre a Diabetes. Disponível na internet em: www.diabete.com.br/diversos/imc.asp. Acesso em dezembro de 2009.


Florianópolis, 07 de abril de 2010.


______________________________________________
Professora: Daiana Zanelato dos Anjos

Anexo I: Desenvolvimento do Conteúdo Aula

Para iniciar a aula, será distribuído o seguinte material impresso aos alunos:

A obesidade Infantil e o cálculo do IMC

Nos dias atuais, com a grande quantidade de pessoas cuidando da saúde e da alimentação, uma das necessidades básicas é ter controle do seu peso.
Há alguns anos atrás, essa preocupação só atingia os adultos, mas com o avanço dos Fast-food e toda quantidade de alimentos que contém conservantes, em geral, industrializadas, essa preocupação se concentrou em outra faixa etária.
Na atualidade, grande parte das pessoas que se preocupam com peso ideal são as crianças. O número de crianças obesas nos países em desenvolvimento triplicou nos últimos 20 anos. É o que mostra uma pesquisa realizada pela Sociedade Americana de Nutrição Clínica. Os cientistas atribuem o aumento da obesidade infantil às melhoras na vida econômica e social. As conseqüências desses avanços fazem com que as crianças comam mais e se exercitem menos. Os pesquisadores analisaram dados obtidos durante 20 anos no Brasil, na Rússia e na China. Os Estados Unidos foi o único país desenvolvido a participar do estudo. Fora a Rússia, o número de crianças obesas cresceu em níveis preocupantes. Enquanto no Brasil o número triplicou, na China aumentou apenas em um quinto, e nos Estados Unidos, dobrou.
No Brasil, os pesquisadores constataram que a renda per capita do país triplicou nos últimos 20 anos, o número de aparelhos de televisão nas residências brasileiras também cresceu. Essa combinação, de acordo com os cientistas é bastante perigosa. As crianças comem mais e passam mais tempo em casa sem fazer nenhuma atividade física. E as academias brasileiras ainda não estão preparadas para atender crianças e adolescentes inativos.

Após a leitura deste texto informativo, será apresentado aos alunos o cálculo do IMC.
Para fazer o cálculo do IMC basta dividir seu peso em quilogramas (Kg) pela altura ao quadrado (em metros). O número que será gerado deve ser comparado aos valores da tabela de IMC para se saber se você está abaixo, em seu peso ideal ou acima do peso.
A fórmula utilizada é a seguinte:

IMC = Peso ÷ (altura)2

Como exemplo, utilizaremos o caso de uma pessoa que pesa 55 Kg e mede 1,65m. Para esta pessoa, calcularemos o IMC e analisaremos a sua condição na tabela de IMC encontrada abaixo. Vejamos:
IMC = 55 ÷ (1,65)2
IMC = 55 ÷ 2, 7225
IMC = 20,20
Sendo assim, como o valor encontrado foi de 20,20, podemos concluir que esta pessoa encontra-se com peso normal para sua altura.

Logo após este exemplo ser apresentado, será solicitado que os alunos calculem o seu próprio IMC. Os alunos receberão impresso uma tabela que auxiliará na análise dos resultados encontrados no cálculo de IMC.
Tabela de IMC
Resultado Situação da Pessoa
Menor que 18,5 Abaixo do peso
Entre 18,5 e 24,9 Peso Normal
Entre 25 e 29,9 Acima do Peso (Sobrepeso
Entre 30 e 34,9 Obesidade grau I
Entre 35 e 39,9 Obesidade grau II
40,0 e acima Obesidade grau III
Figura 1 – Tabela de IMC
Fonte: Imagem de como-emagrecer.com/calculo-de-imc.html (2004), adaptado pela autora.

Em seguida, será solicitado que os cálculos sejam conferidos na calculadora. E finalmente, serão apresentadas as seguintes questões, para discussão e reflexão:


Questões a serem propostas aos alunos



1. Encontre seu índice de massa corpórea (IMC), utilizando a fórmula informada. Todos os cálculos devem ser apontados na caderno.
2. Analise o resultado encontrado, utilizando a tabela de IMC e verificando a situação de seu peso apontando em qual das escalas de peso você se encontra.
3. Faça um pequeno resumo das operações utilizadas quando você fez a conferência dos seus cálculos na calculadora.

Questões para discussão envolvendo o tema transversal


1. Como podemos cuidar melhor da nossa alimentação?
2. Quais alimentos precisamos acrescentar ou retirar de nossa dieta, para que possamos alcançar o peso ideal, e consequentemente, boa saúde?


O professor deve lembrar aos alunos que tiveram resultados alterados que é interessante apresentar estes resultados para os pais para que eles tomem conhecimento deste assunto e providenciem algum tratamento à criança.
Com a conclusão das discussões sobre as questões a aula será encerrada pela professora.


CONSIDERAÇÕES FINAIS

Além de refletir a prática e a questão da didática no ensino, este trabalho proporcionou a elaboração de um plano de aula com um tema livre em Matemática, que nos fez pensar em diversificar, modernizar e problematizar os conteúdos em Matemática.
É perceptível a preocupação dos professores de Matemática com a diversificação e modernização na forma de ensinar esta disciplina. Diversificação esta, que não foge de ensinar conteúdos, mas importa-se com a realidade do aluno, trazendo o conteúdo matemático para o “mundo real das crianças”. O movimento da modernização da Matemática, que se iniciou em 1931, com Euclides Roxo, vem, mais recentemente, envolvendo-se em discussões de projetos de reorientação curricular e mostrando com as propostas apontadas por Moretti e Flores (2008) no decorrer do texto, que a Matemática é uma ciência em total construção.
Com a aplicação deste plano de aula, preocupei-me em buscar um tema para conscientizar as crianças a cuidar da alimentação e consequentemente da sua saúde. Mas esta não foi a finalidade principal. Percebi, durante a minha experiência como professora de Matemática, que as operações com números racionais – especialmente multiplicação e divisão – é de difícil assimilação pelos alunos, que sempre reclamavam do conteúdo.
Este ponto fraco em alguns dos meus alunos, me fez refletir e planejar uma aula mais envolvente, que não se trata apenas de Matemática e de números racionais, mais que os deixasse interados de outros assuntos da realidade que os cerca.
A aula foi imaginada como uma maneira de revisar o conteúdo e também fazer com que os alunos tenham um contato com a calculadora, que acredito ser um instrumento de suma importância no aprendizado matemático.


REFERÊNCIAS


ANDRINI, ÁLVARO. VASCONCELLOS, MARIA JOSÉ. Praticando Matemática. São Paulo: Editora do Brasil, 2002.

DANTE, LUIZ ROBERTO. Tudo é Matemática. São Paulo: Ática, 2005.

DIABETE. Site de Educação sobre a Diabetes. Disponível na internet em: www.diabete.com.br/diversos/imc.asp. Acesso em dezembro de 2009.

EMAGRECIMENTO. Como calcular IMC — uma medida de sua saúde em relação ao seu peso. Disponível na internet em: www. como-emagrecer.com/calculo-de-imc.html. Acesso em dezembro de 2009.

FLORES, Cláudia Regina, & MORETTI, Méricles Thadeu. Metodologia do Ensino de Matemática. Florianópolis: UFSC/EAD/CED/CFM, 2008.

GUELLI, OSCAR. Matemática – Uma Aventura do Pensamento. São Paulo: Ática, 2005.

MELO, ALESSANDRO DE. URBANETZ, SANDRA TEREZINHA. Fundamentos de Didática. Curitiba: Ibpex, 2008.

Revista Nova Escola – Editora Abril. Edição Especial – Parâmetros Curriculares Nacionais- Maio de 2004. Páginas: 57 a 60.

Fonte da pesquisa: Trabalho apresentado ao curso de pós-graduação da autora.